Neural network within a Bayesian inference framework
In Bayesian inference, the likelihood functions are evaluated thousands of times. In this paper we explore the use of an Artificial Neural Network to learn how to calculate the likelihood function and thus speed up the Bayesian inference process. We test the performance of the neural network on a pa...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-01, Vol.1723 (1), p.12022 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In Bayesian inference, the likelihood functions are evaluated thousands of times. In this paper we explore the use of an Artificial Neural Network to learn how to calculate the likelihood function and thus speed up the Bayesian inference process. We test the performance of the neural network on a parameter estimation of the standard cosmological model and show that this method can reduce the computational time. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/1723/1/012022 |