Neural network within a Bayesian inference framework

In Bayesian inference, the likelihood functions are evaluated thousands of times. In this paper we explore the use of an Artificial Neural Network to learn how to calculate the likelihood function and thus speed up the Bayesian inference process. We test the performance of the neural network on a pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-01, Vol.1723 (1), p.12022
Hauptverfasser: Gómez-Vargas, Isidro, Esquivel, Ricardo Medel, García-Salcedo, Ricardo, Vázquez, J Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Bayesian inference, the likelihood functions are evaluated thousands of times. In this paper we explore the use of an Artificial Neural Network to learn how to calculate the likelihood function and thus speed up the Bayesian inference process. We test the performance of the neural network on a parameter estimation of the standard cosmological model and show that this method can reduce the computational time.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1723/1/012022