Bioprinting of Cartilaginous Auricular Constructs Utilizing an Enzymatically Crosslinkable Bioink

Bioprinting of functional tissues could overcome tissue shortages and allow a more rapid response for treatments. However, despite recent progress in bioprinting, and its outstanding ability to position cells and biomaterials in a precise 3D manner, its success has been limited, due to insufficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-04, Vol.31 (16), p.n/a
Hauptverfasser: Fisch, Philipp, Broguiere, Nicolas, Finkielsztein, Sergio, Linder, Thomas, Zenobi‐Wong, Marcy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bioprinting of functional tissues could overcome tissue shortages and allow a more rapid response for treatments. However, despite recent progress in bioprinting, and its outstanding ability to position cells and biomaterials in a precise 3D manner, its success has been limited, due to insufficient maturation of constructs into functional tissue. Here, a novel calcium‐triggered enzymatic crosslinking (CTEC) mechanism for bioinks based on the activation cascade of Factor XIII is presented and utilized for the biofabrication of cartilaginous constructs. Hyaluronan transglutaminase (HA‐TG), an enzymatically crosslinkable material, has shown excellent characteristics for chondrogenesis and builds the basis of the CTEC bioink. The bioink supports tissue maturation with neocartilage formation and stiffening of constructs up to 400 kPa. Bioprinted constructs remain stable in vivo for 24 weeks and bioprinted auricular constructs transform into cartilaginous grafts. A major limitation of the current study is the deposition of collagen I, indicating the maturation toward fibrocartilage rather than elastic cartilage. Shifting the maturation process toward elastic cartilage will therefore be essential in order for the developed bioinks to offer a novel tissue engineered treatment for microtia patients. CTEC bioprinting furthermore opens up use of enzymatically crosslinkable biopolymers and their modularity to support a multitude of tissues. A novel crosslinking mechanism based on calcium‐triggered enzymatic crosslinking (CTEC) is presented, greatly facilitating the use of enzymatically crosslinkable bioinks. The mechanism is utilized for bioprinting of cartilaginous constructs, which show an increase in the compressive modulus up to 400 kPa and remain stable in vivo for up to 24 weeks, paving the way for a novel treatment for microtia patients.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202008261