Three-dimensional model of an external gear pump with an experimental evaluation of the flow ripple

A three-dimensional model of an external gear pump and a new application of an algorithm for the measurement of the unsteady flow rate in hydraulic pipes are presented. The experimental delivery flow ripple was compared with the outcomes of a simulation under different operating conditions. A compre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2021-03, Vol.235 (6), p.1097-1105
Hauptverfasser: Corvaglia, Alessandro, Ferrari, Alessandro, Rundo, Massimo, Vento, Oscar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A three-dimensional model of an external gear pump and a new application of an algorithm for the measurement of the unsteady flow rate in hydraulic pipes are presented. The experimental delivery flow ripple was compared with the outcomes of a simulation under different operating conditions. A comprehensive computational fluid dynamics model of the pump and of the high-pressure delivery circuit was developed in SimericsMP+®. The pump model considers the clearances, which vary according to the shaft angle, between the tip of the tooth and the inner surface of the stator, as well as between the flanks of the teeth that are in contact. The pump delivery circuit is constituted by a straight pipe with a fixed orifice at the end to generate the load. The model of the entire system was preliminarily validated in terms of delivery pressure ripple. Subsequently, the simulated flow ripple was contrasted with the instantaneous flow rate, measured by means of an innovative flow meter. It was found that the proposed flow meter is reliable in assessing the flow oscillations under the various working conditions.
ISSN:0954-4062
2041-2983
DOI:10.1177/0954406220937043