Training Quantum Neural Networks on NISQ Devices

The advent of noisy intermediate-scale quantum (NISQ) devices offers crucial opportunities for the development of quantum algorithms. Here we evaluate the noise tolerance of two quantum neural network (QNN) architectures on IBM's NISQ devices, namely, dissipative QNN (DQNN) whose building-block...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-04
Hauptverfasser: Beer, Kerstin, List, Daniel, Müller, Gabriel, Osborne, Tobias J, Struckmann, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The advent of noisy intermediate-scale quantum (NISQ) devices offers crucial opportunities for the development of quantum algorithms. Here we evaluate the noise tolerance of two quantum neural network (QNN) architectures on IBM's NISQ devices, namely, dissipative QNN (DQNN) whose building-block perceptron is a completely positive map, and the quantum approximate optimization algorithm (QAOA). We compare these two approaches to learning an unknown unitary. While both networks succeed in this learning task, we find that a DQNN learns an unknown unitary more reliably than QAOA and is less susceptible to gate noise.
ISSN:2331-8422