Real-time monitoring and control for high-efficiency autonomous laser fabrication of silicon nanoparticle colloids

Nanotechnology is a significant research tool for biological and medical research with major advancements achieved from nanoparticle (Np) applications in biosensing and biotherapeutics. For laser ablation synthesis in solution (LASiS) to be chosen by researchers for Np colloid production, the proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2021-05, Vol.114 (1-2), p.291-304
Hauptverfasser: Freeland, Brian, McCann, Ronan, O’Neill, Paul, Sreenilayam, Sithara, Tiefenthaler, Manuel, Dabros, Michal, Juillerat, Mandy, Foley, Greg, Brabazon, Dermot
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanotechnology is a significant research tool for biological and medical research with major advancements achieved from nanoparticle (Np) applications in biosensing and biotherapeutics. For laser ablation synthesis in solution (LASiS) to be chosen by researchers for Np colloid production, the process must effectively compete with chemical synthesis in terms of produced colloid quality and productivity while taking advantage of LASiS benefits in terms of its ‘green-synthesis’ and single-step functionalisation abilities. In this work, a newly developed integrated LASiS Np manufacturing system is presented including a Np flow reactor design, an at-line Np size monitoring via 180° dynamic light scattering, and a UV-Vis spectroscopy system used to estimate colloid concentration and stability. The experimental outcomes are discussed in terms of Np productivity and quality via these at-line measurements from the UV-Vis and DLS systems. The developed instrument was validated via off-line SiNps DLS, UV-Vis and morphology tests via TEM. Ultra-high quality and nanoparticle fabrication rate efficiency was achieved and is reported here.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-021-06772-6