Linear and non-linear refractive indices in curved space

The refractive index and curved space relation is formulated using the Riemann-Christoffel curvature tensor. As a consequence of the fourth rank tensor of the Riemann-Christoffel curvature tensor, we found that the refractive index should be a second rank tensor. The second rank tensor of the refrac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-02, Vol.1796 (1), p.12125
Hauptverfasser: Hadi, Miftachul, Deta, Utama Alan, Husein, Andri Sofyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The refractive index and curved space relation is formulated using the Riemann-Christoffel curvature tensor. As a consequence of the fourth rank tensor of the Riemann-Christoffel curvature tensor, we found that the refractive index should be a second rank tensor. The second rank tensor of the refractive index describes a linear optics. It implies naturally that the Riemann-Christoffel curvature tensor is related to the linear optics. In case of a non-linear optics, the refractive index is a sixth rank tensor, if susceptibility is a fourth rank tensor.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1796/1/012125