Linear and non-linear refractive indices in curved space
The refractive index and curved space relation is formulated using the Riemann-Christoffel curvature tensor. As a consequence of the fourth rank tensor of the Riemann-Christoffel curvature tensor, we found that the refractive index should be a second rank tensor. The second rank tensor of the refrac...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-02, Vol.1796 (1), p.12125 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The refractive index and curved space relation is formulated using the Riemann-Christoffel curvature tensor. As a consequence of the fourth rank tensor of the Riemann-Christoffel curvature tensor, we found that the refractive index should be a second rank tensor. The second rank tensor of the refractive index describes a linear optics. It implies naturally that the Riemann-Christoffel curvature tensor is related to the linear optics. In case of a non-linear optics, the refractive index is a sixth rank tensor, if susceptibility is a fourth rank tensor. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/1796/1/012125 |