Beyond the Weyl barrier for \(\mathrm{GL}(2)\) exponential sums
In this paper, we use the Bessel \(\delta\)-method, along with new variants of the van der Corput method in two dimensions, to prove non-trivial bounds for \(\mathrm{GL}(2)\) exponential sums beyond the Weyl barrier. More explicitly, for sums of \(\mathrm{GL}(2)\) Fourier coefficients twisted by \(e...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Holowinsky, Roman Munshi, Ritabrata Qi, Zhi |
description | In this paper, we use the Bessel \(\delta\)-method, along with new variants of the van der Corput method in two dimensions, to prove non-trivial bounds for \(\mathrm{GL}(2)\) exponential sums beyond the Weyl barrier. More explicitly, for sums of \(\mathrm{GL}(2)\) Fourier coefficients twisted by \(e(f(n))\), with length \(N\) and phase \(f(n)=N^{\beta} \log n / 2\pi\) or \(a n^{\beta}\), non-trivial bounds are established for \( \beta < 1.63651... \), which is beyond the Weyl barrier at \(\beta = 3/2\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2512177299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512177299</sourcerecordid><originalsourceid>FETCH-proquest_journals_25121772993</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwd0qtzM9LUSjJSFUIT63MUUhKLCrKTC1SSMsvUojRiMlNLMkoyq1296nVMNKM0VRIrSjIz0vNK8lMzFEoLs0t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNTQyNDc3MjS0tj4lQBAIrpN9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512177299</pqid></control><display><type>article</type><title>Beyond the Weyl barrier for \(\mathrm{GL}(2)\) exponential sums</title><source>Free E- Journals</source><creator>Holowinsky, Roman ; Munshi, Ritabrata ; Qi, Zhi</creator><creatorcontrib>Holowinsky, Roman ; Munshi, Ritabrata ; Qi, Zhi</creatorcontrib><description>In this paper, we use the Bessel \(\delta\)-method, along with new variants of the van der Corput method in two dimensions, to prove non-trivial bounds for \(\mathrm{GL}(2)\) exponential sums beyond the Weyl barrier. More explicitly, for sums of \(\mathrm{GL}(2)\) Fourier coefficients twisted by \(e(f(n))\), with length \(N\) and phase \(f(n)=N^{\beta} \log n / 2\pi\) or \(a n^{\beta}\), non-trivial bounds are established for \( \beta < 1.63651... \), which is beyond the Weyl barrier at \(\beta = 3/2\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Sums</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Holowinsky, Roman</creatorcontrib><creatorcontrib>Munshi, Ritabrata</creatorcontrib><creatorcontrib>Qi, Zhi</creatorcontrib><title>Beyond the Weyl barrier for \(\mathrm{GL}(2)\) exponential sums</title><title>arXiv.org</title><description>In this paper, we use the Bessel \(\delta\)-method, along with new variants of the van der Corput method in two dimensions, to prove non-trivial bounds for \(\mathrm{GL}(2)\) exponential sums beyond the Weyl barrier. More explicitly, for sums of \(\mathrm{GL}(2)\) Fourier coefficients twisted by \(e(f(n))\), with length \(N\) and phase \(f(n)=N^{\beta} \log n / 2\pi\) or \(a n^{\beta}\), non-trivial bounds are established for \( \beta < 1.63651... \), which is beyond the Weyl barrier at \(\beta = 3/2\).</description><subject>Sums</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwd0qtzM9LUSjJSFUIT63MUUhKLCrKTC1SSMsvUojRiMlNLMkoyq1296nVMNKM0VRIrSjIz0vNK8lMzFEoLs0t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNTQyNDc3MjS0tj4lQBAIrpN9o</recordid><startdate>20210419</startdate><enddate>20210419</enddate><creator>Holowinsky, Roman</creator><creator>Munshi, Ritabrata</creator><creator>Qi, Zhi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210419</creationdate><title>Beyond the Weyl barrier for \(\mathrm{GL}(2)\) exponential sums</title><author>Holowinsky, Roman ; Munshi, Ritabrata ; Qi, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25121772993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Sums</topic><toplevel>online_resources</toplevel><creatorcontrib>Holowinsky, Roman</creatorcontrib><creatorcontrib>Munshi, Ritabrata</creatorcontrib><creatorcontrib>Qi, Zhi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holowinsky, Roman</au><au>Munshi, Ritabrata</au><au>Qi, Zhi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Beyond the Weyl barrier for \(\mathrm{GL}(2)\) exponential sums</atitle><jtitle>arXiv.org</jtitle><date>2021-04-19</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper, we use the Bessel \(\delta\)-method, along with new variants of the van der Corput method in two dimensions, to prove non-trivial bounds for \(\mathrm{GL}(2)\) exponential sums beyond the Weyl barrier. More explicitly, for sums of \(\mathrm{GL}(2)\) Fourier coefficients twisted by \(e(f(n))\), with length \(N\) and phase \(f(n)=N^{\beta} \log n / 2\pi\) or \(a n^{\beta}\), non-trivial bounds are established for \( \beta < 1.63651... \), which is beyond the Weyl barrier at \(\beta = 3/2\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2512177299 |
source | Free E- Journals |
subjects | Sums |
title | Beyond the Weyl barrier for \(\mathrm{GL}(2)\) exponential sums |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Beyond%20the%20Weyl%20barrier%20for%20%5C(%5Cmathrm%7BGL%7D(2)%5C)%20exponential%20sums&rft.jtitle=arXiv.org&rft.au=Holowinsky,%20Roman&rft.date=2021-04-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2512177299%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512177299&rft_id=info:pmid/&rfr_iscdi=true |