Beyond the Weyl barrier for \(\mathrm{GL}(2)\) exponential sums
In this paper, we use the Bessel \(\delta\)-method, along with new variants of the van der Corput method in two dimensions, to prove non-trivial bounds for \(\mathrm{GL}(2)\) exponential sums beyond the Weyl barrier. More explicitly, for sums of \(\mathrm{GL}(2)\) Fourier coefficients twisted by \(e...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we use the Bessel \(\delta\)-method, along with new variants of the van der Corput method in two dimensions, to prove non-trivial bounds for \(\mathrm{GL}(2)\) exponential sums beyond the Weyl barrier. More explicitly, for sums of \(\mathrm{GL}(2)\) Fourier coefficients twisted by \(e(f(n))\), with length \(N\) and phase \(f(n)=N^{\beta} \log n / 2\pi\) or \(a n^{\beta}\), non-trivial bounds are established for \( \beta < 1.63651... \), which is beyond the Weyl barrier at \(\beta = 3/2\). |
---|---|
ISSN: | 2331-8422 |