Hubble Space Telescope Observations of the Old Pulsar PSR J0108–1431

We present results of optical-UV observations of the 200 Myr old rotation-powered radio pulsar J0108−1431 with the Hubble Space Telescope. We found a putative candidate for the far-UV (FUV) pulsar counterpart, with the flux density f ν = 9.0 ± 3.2 nJy at λ = 1528 Å. The pulsar was not detected, howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-04, Vol.911 (1), p.1
Hauptverfasser: Abramkin, Vadim, Shibanov, Yuriy, Mignani, Roberto P., Pavlov, George G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present results of optical-UV observations of the 200 Myr old rotation-powered radio pulsar J0108−1431 with the Hubble Space Telescope. We found a putative candidate for the far-UV (FUV) pulsar counterpart, with the flux density f ν = 9.0 ± 3.2 nJy at λ = 1528 Å. The pulsar was not detected, however, at longer wavelengths, with 3 σ upper limits of 52, 37, and 87 nJy at λ = 4326, 3355, and 2366 Å, respectively. Assuming that the pulsar counterpart was indeed detected in FUV, and the previously reported marginal U and B detections with the Very Large Telescope were real, the optical-UV spectrum of the pulsar can be described by a power-law model with a nearly flat f ν spectrum. Similar to younger pulsars detected in the optical, the slope of the nonthermal spectrum steepens in the X-ray range. The pulsar’s luminosity in the 1500–6000 Å wavelength range, L ∼ 1.2 × 10 27 ( d /210 pc) 2 erg s −1 , corresponds to a high efficiency of conversion of pulsar rotation energy-loss rate to the optical-UV radiation, , depending on somewhat uncertain values of distance and spectral slope. The brightness temperature of the bulk neutron star surface does not exceed 59,000 K (3 σ upper bound), as seen by a distant observer. If we assume that the FUV flux is dominated by a thermal component, then the surface temperature can be in the range of 27,000–55,000 K, Requiring a heating mechanism to operate in old neutron stars.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/abe704