Arc domination in digraphs
Let D = ( V , A ) be a digraph. A subset S of arc set in a digraph D is called an arc dominating set of D if for every arc ( v, w ) ∈ A/S , there exists an arc ( u, v ) ∈ S such that {( u, v ), ( v, w )} ∈ A . The minimum cardinality of an arc dominating set of D is called the arc domination number...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-03, Vol.1770 (1), p.12075 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
D
= (
V
,
A
) be a digraph. A subset S of arc set in a digraph D is called an arc dominating set of D if for every
arc
(
v, w
) ∈
A/S
, there exists an
arc
(
u, v
) ∈
S
such that {(
u, v
), (
v, w
)} ∈
A
. The minimum cardinality of an arc dominating set of D is called the arc domination number of D and is donated by
γ
′ (
D
). In this paper, arc domination number for various digraphs were determined and also derived a characterization for minimal arc dominating sets of digraphs. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/1770/1/012075 |