Arc domination in digraphs

Let D = ( V , A ) be a digraph. A subset S of arc set in a digraph D is called an arc dominating set of D if for every arc ( v, w ) ∈ A/S , there exists an arc ( u, v ) ∈ S such that {( u, v ), ( v, w )} ∈ A . The minimum cardinality of an arc dominating set of D is called the arc domination number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-03, Vol.1770 (1), p.12075
Hauptverfasser: Anbunathan, R., Rajeswari, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let D = ( V , A ) be a digraph. A subset S of arc set in a digraph D is called an arc dominating set of D if for every arc ( v, w ) ∈ A/S , there exists an arc ( u, v ) ∈ S such that {( u, v ), ( v, w )} ∈ A . The minimum cardinality of an arc dominating set of D is called the arc domination number of D and is donated by γ ′ ( D ). In this paper, arc domination number for various digraphs were determined and also derived a characterization for minimal arc dominating sets of digraphs.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1770/1/012075