The Detailed Dynamics of the Hadley Cell. Part II: December–February

This paper complements an earlier paper on the June–August Hadley cell by giving a detailed analysis of the December–February Hadley cell as seen in a 30-yr climatology of ERA-Interim data. The focus is on the dynamics of the upper branch of the Hadley cell. There are significant differences between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2021-01, Vol.34 (2), p.805-823
Hauptverfasser: Hoskins, B. J., Yang, G.-Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper complements an earlier paper on the June–August Hadley cell by giving a detailed analysis of the December–February Hadley cell as seen in a 30-yr climatology of ERA-Interim data. The focus is on the dynamics of the upper branch of the Hadley cell. There are significant differences between the Hadley cells in the two solsticial seasons. These are particularly associated with the ITCZs staying north of the equator and with mean westerlies in the equatorial regions of the east Pacific and Atlantic in December–February. The latter enables westward-moving mixed Rossby–gravity waves to be slow moving in those regions and therefore respond strongly to upstream off-equatorial active convection. However, the main result is that in both seasons it is the regions and times of active convection that predominantly lead to upper-tropospheric outflows and structures that average to give the mean flow toward the winter pole, and the steady and transient fluxes of momentum and vorticity that balance the Coriolis terms. The response to active convection in preferred regions is shown by means of regressions on the data from the climatology and by synoptic examples from one season. Eddies with tropical origin are seen to be important in their own right and also in their interaction with higher-latitude systems. There is support for the relevance of a new conceptual model of the Hadley cell based on the sporadic nature of active tropical convection in time and space.
ISSN:0894-8755
1520-0442
DOI:10.1175/jcli-d-20-0504.1