Improvement in the Forecasting of Heavy Rainfall over South China in the DSAEF_LTP Model by Introducing the Intensity of the Tropical Cyclone

The intensity of the tropical cyclone has been introduced into the Dynamical-Statistical-Analog Ensemble Forecast (DSAEF) for Landfalling Typhoon (or tropical cyclone) Precipitation (DSAEF_LTP) model. Moreover, the accumulated precipitation prediction experiments have been conducted on 21 target tro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Weather and forecasting 2020-10, Vol.35 (5), p.1967-1980
Hauptverfasser: Chenchen, Ding, Ren, Fumin, Liu, Yanan, McBride, John L., Feng, Tian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The intensity of the tropical cyclone has been introduced into the Dynamical-Statistical-Analog Ensemble Forecast (DSAEF) for Landfalling Typhoon (or tropical cyclone) Precipitation (DSAEF_LTP) model. Moreover, the accumulated precipitation prediction experiments have been conducted on 21 target tropical cyclones with daily precipitation ≥ 100 mm in South China from 2012 to 2016. The best forecasting scheme for the DSAEF_LTP model is identified, and the performance of the prediction is compared with three numerical weather prediction models (the European Centre for Medium-Range Weather Forecasts, the Global Forecast System, and T639). The forecasting ability of the DSAEF_LTP model for heavy rainfall (accumulated precipitation ≥ 250 and ≥100 mm) improves when the intensity of the tropical cyclone is introduced, giving some advantages over the three numerical weather prediction models. The selection of analog tropical cyclones with a maximum intensity (during precipitation over land) equaling to or higher than the initial intensity of the target tropical cyclone gives better forecasts. The prediction accuracy for accumulated precipitation is higher for tropical cyclones with higher intensity and higher observed precipitation, with in both cases positive linear correlations with the threat score.
ISSN:0882-8156
1520-0434
DOI:10.1175/WAF-D-19-0247.1