A New Description of Small-Scale and Large-Scale Roughness in the Fast Ocean Surface Emissivity Model
The widely used Fast Microwave Ocean Surface Emissivity Model (FASTEM) does not include the interaction between small-scale and large-scale roughness, which seems to induce errors in the ocean surface emissivity estimation. In this study, we attempt to develop a new model that might be included in t...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2021-03, Vol.38 (3), p.501-510 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The widely used Fast Microwave Ocean Surface Emissivity Model (FASTEM) does not include the interaction between small-scale and large-scale roughness, which seems to induce errors in the ocean surface emissivity estimation. In this study, we attempt to develop a new model that might be included in the FASTEM-like model. In the developed model, the large-scale roughness is expressed as a function of the local incidence angle (LIA) within the context of Fresnel reflection theory, incorporating the interactions between the small-scale and large-scale roughness into the fast ocean surface emissivity model, as done in the two-scale approach. With the new expression of the large-scale roughness, we also provide a more physically based form of the equation for the fast ocean surface emissivity calculation that includes the small-scale scattering over a geometrically rough surface. In addition, an algorithm for estimating two-scale roughness from the measured or modeled polarized emissivities in conjunction with the proposed fast ocean surface emissivity equation is provided. The results demonstrate that the interactions between two-scale roughness should be considered in order to estimate accurate two-scale roughness influences on the ocean surface emissivity. |
---|---|
ISSN: | 0739-0572 1520-0426 |
DOI: | 10.1175/JTECH-D-20-0065.1 |