Diversity of the Madden–Julian Oscillation: Initiation Region Modulated by the Interaction between the Intraseasonal and Interannual Variabilities

As one of the aspects of the diversity of the Madden–Julian oscillation (MJO), the modulation of initiation regions of the boreal-winter MJO is studied in terms of the relationship between intraseasonal and interannual variabilities. MJOs are categorized as those initiating in the Indian Ocean (IO),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2021-03, Vol.34 (6), p.2297-2318
Hauptverfasser: Takasuka, Daisuke, Satoh, Masaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As one of the aspects of the diversity of the Madden–Julian oscillation (MJO), the modulation of initiation regions of the boreal-winter MJO is studied in terms of the relationship between intraseasonal and interannual variabilities. MJOs are categorized as those initiating in the Indian Ocean (IO), Maritime Continent (MC), and western Pacific (WP), referred to herein as IO-MJOs, MC-MJOs, and WP-MJOs, respectively. The composite analyses for each MJO category using observational data reveal that the diversity of MJO initiation regions directly results from the modulation of areas where horizontal advective premoistening efficiently occurs via intraseasonal/synoptic-scale winds. This is supported by the difference in the zonal location of equatorial intraseasonal circulations established before MJO initiation, which is related to a spatial change in background convection and associated Walker circulations forced by interannual sea surface temperature (SST) variability. Compared to IO-MJOs (favored in the climatological background on average), MC-MJOs tend to be realized under the eastern-Pacific El Niño–like condition, as a result of eastward-shifted intraseasonal convection and circulation patterns induced by background suppressed convection in the eastern MC. WP-MJOs are frequently initiated under the central-Pacific El Niño–like and positive IO dipole–like conditions, in which theWP is selectively moistened with the aid of background enhanced (suppressed) convection over the WP (the southeastern IO and the central-to-eastern Pacific). This major tendency derived from sample-limited observations is verified by a set of 15-yr numerical experiments with a global nonhydrostatic MJO-permitting model under a perpetual boreal-winter condition where observation-based SSTs are prescribed.
ISSN:0894-8755
1520-0442
DOI:10.1175/jcli-d-20-0688.1