Atmospheric Subseasonal Variability and Circulation Regimes: Spectra, Trends, and Uncertainties

The globally integrated subseasonal variability associated with the two main atmospheric circulation regimes, the balanced (or Rossby) and unbalanced (or inertia–gravity) regimes, is evaluated for the four reanalysis datasets: ERA-Interim, JRA-55, MERRA, and ERA5. The results quantify amplitudes and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2020-11, Vol.33 (21), p.9375-9390
Hauptverfasser: Žagar, Nedjeljka, Zaplotnik, žiga, Karami, Khalil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The globally integrated subseasonal variability associated with the two main atmospheric circulation regimes, the balanced (or Rossby) and unbalanced (or inertia–gravity) regimes, is evaluated for the four reanalysis datasets: ERA-Interim, JRA-55, MERRA, and ERA5. The results quantify amplitudes and trends in midlatitude traveling and quasi-stationary Rossby wave patterns as well as in the equatorial wave activity across scales. A statistically significant reduction of subseasonal variability is found in Rossby waves with zonal wavenumber k = 6 along with an increase in variability in wavenumbers k = 3–5 in the summer seasons of both hemispheres. The four reanalyses also agree regarding increased variability in the large-scale Kelvin waves, mixed Rossby–gravity waves, and westward-propagating inertio-gravity waves with the lowest meridional mode. The amplitude and sign of trends in inertia–gravity modes with smaller zonal scales and greater meridional modes differ between the ERA-Interim and JRA-55 datasets on the one hand and the ERA5 and MERRA data on the other. An increased variability in the ERA-Interim and JRA-55 accounts for positive trends in their total subseasonal variability.
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI-D-20-0225.1