Entrainment and Its Dependency on Environmental Conditions and Convective Organization in Convection-Permitting Simulations

In this study, we estimate bulk entrainment rates for deep convection in convection-permitting simulations, conducted over the tropical Atlantic Ocean, encompassing parts of Africa and South America. We find that, even though entrainment rates decrease with height in all regions, they are, when aver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2021-02, Vol.149 (2), p.537-550
Hauptverfasser: Becker, Tobias, Hohenegger, Cathy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we estimate bulk entrainment rates for deep convection in convection-permitting simulations, conducted over the tropical Atlantic Ocean, encompassing parts of Africa and South America. We find that, even though entrainment rates decrease with height in all regions, they are, when averaging between 600 and 800 hPa, generally higher over land than over ocean. This is so because, over Amazonia, shallow convection causes an increase of bulk entrainment rates at lower levels and because, over West Africa, where entrainment rates are highest, convection is organized in squall lines. These squall lines are associated with strong mesoscale convergence, causing more intense updrafts and stronger turbulence generation in the vicinity of updrafts, increasing the entrainment rates. With the exception of West Africa, entrainment rates differ less across regions than across different environments within the regions. In contrast to what is usually assumed in convective parameterizations, entrainment rates increase with environmental humidity. Furthermore, over ocean, they increase with static stability, while over land, they decrease. In addition, confirming the results of a recent idealized study, entrainment rates increase with convective aggregation, except in regions dominated by squall lines, like over West Africa.
ISSN:0027-0644
1520-0493
DOI:10.1175/MWR-D-20-0229.1