Applications of Uncrewed Aerial Vehicles (UAVs) in Winter Precipitation-Type Forecasts

Temperature and humidity profiles in the lowest 3 km of the atmosphere provide crucial information in determining the precipitation type, which aids forecasters in relaying winter-weather risks. In response to the challenges associated with forecasting mixed-phase environments, this study employs un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied meteorology and climatology 2021-03, Vol.60 (3), p.361-375
Hauptverfasser: Tripp, Daniel D., Martin, Elinor R., Reeves, Heather D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Temperature and humidity profiles in the lowest 3 km of the atmosphere provide crucial information in determining the precipitation type, which aids forecasters in relaying winter-weather risks. In response to the challenges associated with forecasting mixed-phase environments, this study employs uncrewed aerial vehicles (UAVs) to explore the efficacy of high-resolution temporal and vertical measurements in winter-weather environments. On 19 February 2019, boundary layer measurements of an Oklahoma winter storm were collected by a UAV and radiosondes. UAV observations show a pronounced surface-based subfreezing layer that corresponds to observed ice pellets at the surface. This is in contrast to the High-Resolution Rapid Refresh (HRRR) model analyses, which show a subfreezing layer near the surface that is 3°C warmer than both the UAV and radiosonde observations. Using a spectral-bin-microphysics algorithm designed to provide hydrometeor-phase diagnosis throughout the vertical column, it was found that UAV measurements can improve discrimination between hydrometer types in environments near 0°C. A numerical-modeling study of the same winter-weather event illustrates the potential benefit of vertically sampling a mixed-phase environment at multiple mesonet sites and highlights future scientific and operational questions to be addressed by the UAV community.
ISSN:1558-8424
1558-8432
DOI:10.1175/jamc-d-20-0047.1