Entwined modules over linear categories and Galois extensions
In this paper, we study modules over quotient spaces of certain categorified fiber bundles. These are understood as modules over entwining structures involving a small K -linear category D and a K -coalgebra C . We obtain Frobenius and separability conditions for functors on entwined modules. We als...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2021-03, Vol.241 (2), p.623-692 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study modules over quotient spaces of certain categorified fiber bundles. These are understood as modules over entwining structures involving a small
K
-linear category
D
and a
K
-coalgebra
C
. We obtain Frobenius and separability conditions for functors on entwined modules. We also introduce the notion of a
C
-Galois extension
ℰ
⊆
D
of categories. Under suitable conditions, we show that entwined modules over a
C
-Galois extension may be described as modules over the subcategory
ℰ
of
C
-coinvariants of
D
. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-021-2108-2 |