Entwined modules over linear categories and Galois extensions

In this paper, we study modules over quotient spaces of certain categorified fiber bundles. These are understood as modules over entwining structures involving a small K -linear category D and a K -coalgebra C . We obtain Frobenius and separability conditions for functors on entwined modules. We als...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2021-03, Vol.241 (2), p.623-692
Hauptverfasser: Balodi, Mamta, Banerjee, Abhishek, Ray, Samarpita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study modules over quotient spaces of certain categorified fiber bundles. These are understood as modules over entwining structures involving a small K -linear category D and a K -coalgebra C . We obtain Frobenius and separability conditions for functors on entwined modules. We also introduce the notion of a C -Galois extension ℰ ⊆ D of categories. Under suitable conditions, we show that entwined modules over a C -Galois extension may be described as modules over the subcategory ℰ of C -coinvariants of D .
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-021-2108-2