Positive solution for an indefinite fourth-order nonlocal problem
We prove the existence of a positive solution for the problem γΔ 2 u − m ( u ) Δ u = μ a ( x ) u q + b ( x ) u p , in Ω, u = γΔ u = 0 , on ∂ Ω, where Ω ⊂ ℝ N is a bounded smooth domain, γ ∈ {0, 1},0 < q > 1 < p, m is weakly continuous in H 2 ( Ω ) ∩ H 0 1 ( Ω ) , a ∈ L ∞ ( Ω ) is nonnegativ...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2021-03, Vol.241 (2), p.775-794 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the existence of a positive solution for the problem
γΔ
2
u
−
m
(
u
)
Δ
u
=
μ
a
(
x
)
u
q
+
b
(
x
)
u
p
,
in
Ω,
u
=
γΔ
u
=
0
,
on
∂
Ω,
where Ω ⊂ ℝ
N
is a bounded smooth domain,
γ
∈ {0, 1},0 <
q
> 1 <
p, m
is weakly continuous in
H
2
(
Ω
)
∩
H
0
1
(
Ω
)
,
a
∈
L
∞
(
Ω
)
is nonnegative and
b
is a bounded potential which can change sign. The solution is obtained via a sub-supersolution approach when the parameter
µ
> 0 is small. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-021-2104-6 |