Effect of Prolonged Thermal Exposure on Microstructure and Mechanical Properties of Zr – 1 wt.% Nb and Ti – 45 wt.% Nb Ultrafine-Grained Bioinert Alloys
The results on thermal stability of the microstructure and mechanical properties of Zr – 1 wt.% Nb and Ti – 45 wt.% Nb ultrafine-grained alloys subjected to long-term thermal annealing at a temperature of 400°С are presented. It is shown that in a Zr – 1 wt.% Nb ultrafine-grained alloy an increase i...
Gespeichert in:
Veröffentlicht in: | Russian physics journal 2021-03, Vol.63 (11), p.1846-1853 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The results on thermal stability of the microstructure and mechanical properties of Zr – 1 wt.% Nb and Ti – 45 wt.% Nb ultrafine-grained alloys subjected to long-term thermal annealing at a temperature of 400°С are presented. It is shown that in a Zr – 1 wt.% Nb ultrafine-grained alloy an increase in the annealing duration from 5 to 360 hr leads to a growth of the structural elements (grains, subgrains, fragments) of the α-Zr matrix phase and β-Nb particles. This is a consequence of the recrystallization processes, which gives rise to softening of the alloy and a decrease in their microhardness and yield stress. It is found out that an annealing treatment for as long as 360 hr does not affect the structural element size of β-phase in the Ti – 45 wt.% Nb alloy but favors a noticeable grain growth in α- and ω-phases. It is demonstrated that disordering of the Ti – 45 wt.% Nb alloy and a decrease in its mechanical characteristics are due to the recovery processes at the grain boundaries, an increase in the nanosized grains of α- and- ω-phases, and their decreased contribution to dispersion hardening. |
---|---|
ISSN: | 1064-8887 1573-9228 |
DOI: | 10.1007/s11182-021-02242-4 |