Column subset selection is NP-complete

Let M be a real r×c matrix, and let k be a positive integer. In the column subset selection problem (CSSP), we need to minimize the quantity ‖M−SA‖, where A can be an arbitrary k×c matrix, and S runs over all r×k submatrices of M. This problem and its applications in numerical linear algebra are bei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2021-02, Vol.610, p.52-58
1. Verfasser: Shitov, Yaroslav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let M be a real r×c matrix, and let k be a positive integer. In the column subset selection problem (CSSP), we need to minimize the quantity ‖M−SA‖, where A can be an arbitrary k×c matrix, and S runs over all r×k submatrices of M. This problem and its applications in numerical linear algebra are being discussed for several decades, but its algorithmic complexity remained an open issue. We show that CSSP is NP-complete.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2020.09.015