Classification, Slippage, Failure and Discovery

This text argues for the potential of machine learning infused classification systems as vectors for a technically-engaged and constructive technology critique. The text describes this potential with several experiments in image data creation and neural network based classification. The text conside...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-04
1. Verfasser: Böhlen, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This text argues for the potential of machine learning infused classification systems as vectors for a technically-engaged and constructive technology critique. The text describes this potential with several experiments in image data creation and neural network based classification. The text considers varying aspects of slippage in classification and considers the potential for discovery - as opposed to disaster - stemming from machine learning systems when they fail to perform as anticipated.
ISSN:2331-8422