Deep Neural Networks: Selected Aspects of Learning and Application
Training methods for deep neural networks (DNNs) are analyzed. It is shown that maximizing the likelihood function of the distribution of the input data P ( x ) in the space of synaptic connections of a restricted Boltzmann machine (RBM) is equivalent to minimizing the cross-entropy (CE) of the netw...
Gespeichert in:
Veröffentlicht in: | Pattern recognition and image analysis 2021, Vol.31 (1), p.132-143 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Training methods for deep neural networks (DNNs) are analyzed. It is shown that maximizing the likelihood function of the distribution of the input data
P
(
x
) in the space of synaptic connections of a restricted Boltzmann machine (RBM) is equivalent to minimizing the cross-entropy (CE) of the network error function and minimizing the total mean squared error (MSE) of the network in the same space using linear neurons. The application of DNNs for the detection and recognition of productmarking is considered. |
---|---|
ISSN: | 1054-6618 1555-6212 |
DOI: | 10.1134/S1054661821010090 |