Lingering Taxonomic Challenges Hinder Conservation and Management of Global Bonefishes

Despite expanding research on the popular recreational fishery, bonefish taxonomy remains murky. The genus Albula, comprising these iconic circumtropical marine sportfishes, has a complex taxonomic history driven by highly conserved morphology. Presently, 12 putative species are spread among 3 speci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fisheries 2020-07, Vol.45 (7), p.347-358
Hauptverfasser: Pickett, Brandon D., Wallace, Elizabeth M., Ridge, Perry G., Kauwe, John S. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite expanding research on the popular recreational fishery, bonefish taxonomy remains murky. The genus Albula, comprising these iconic circumtropical marine sportfishes, has a complex taxonomic history driven by highly conserved morphology. Presently, 12 putative species are spread among 3 species complexes. The cryptic morphology hinders visual identification, requiring genetic species identification in some cases. Unclear nomenclature can have unintended consequences, including exacerbating taxonomic uncertainty and complicating resolution efforts. Further, ignoring this reality in publications may erode management and conservation efforts. In the Indian and Pacific oceans, ranges and areas of overlap are unclear, precluding certainty about which species support the fishery and hindering conservation efforts. Species overlap, at both broad and localized spatial scales, may mask population declines if one is targeted primarily (as demonstrated in the western Atlantic fishery). Additional work is necessary, especially to increase our understanding of spatiotemporal ecology across life history stages and taxa. If combined with increased capacity to discern between cryptic species, population structure may be ascertained, and fisheries stakeholders will be enabled to make informed decisions. To assist in such efforts, we have constructed new range maps for each species and species complex. For bonefishes, conservation genomic approaches may resolve lingering taxonomic uncertainties, supporting effective conservation and management efforts. These methods apply broadly to taxonomic groups with cryptic diversity, aiding species delimitation and taxonomic revisions.
ISSN:0363-2415
1548-8446
1548-8675
DOI:10.1002/fsh.10438