Anti-corrosive Hybrid Electrolytes for Rechargeable Aqueous Zinc Batteries
Aqueous zinc(Zn)-metal cells with cost-effective components and high safety have long been a promising large-scale energy storage system, but Zn anodes are intrinsically unstable with common aqueous electrolytes, causing substantial underutilization of the theoretical capacity. In this work, we repo...
Gespeichert in:
Veröffentlicht in: | Chemical research in Chinese universities 2021-04, Vol.37 (2), p.328-334 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aqueous zinc(Zn)-metal cells with cost-effective components and high safety have long been a promising large-scale energy storage system, but Zn anodes are intrinsically unstable with common aqueous electrolytes, causing substantial underutilization of the theoretical capacity. In this work, we report a strictly neutral aqueous Zn electrolyte at a low cost by leveraging the dynamic hydrolysis equilibrium of a dual-salt Zn(Ac)
2
/NaAc(Ac: CH
3
COO
−
) formulation. With the pH regulation, the corrosion and hydrogen evolution encountered in Zn anodes can be suppressed significantly. This hybrid aqueous electrolyte not only enables dendrite-free Zn plating/stripping at a nearly 95% Coulombic efficiency[an increase of 24% compared to that of the single-salt 1 mol/L Zn(Ac)
2
electrolyte], but also supports the reversible operation of Zn cells paired with either Na
3
V
2
(PO
4
)
3
or iodine cathodes—the former delivers a high output voltage of 1.55 V with an energy level of 99.5 W·h/kg(based on the mass of the cathode), and the latter possesses a high specific capacity of 110.9 mA·h/g while yielding long-term cyclability(thousands of cycles). These findings open up a new avenue of modifying practical electrolytes having targeted properties to stabilize multivalent metal anodes. |
---|---|
ISSN: | 1005-9040 2210-3171 |
DOI: | 10.1007/s40242-021-1041-6 |