From 1 to 6: A Finer Analysis of Perturbed Branching Brownian Motion
The logarithmic correction for the order of the maximum for two‐speed branching Brownian motion changes discontinuously when approaching slopes σ12=σ22=1, which corresponds to standard branching Brownian motion. In this article we study this transition more closely by choosing σ12=1±t−α and σ22=1∓t−...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2020-07, Vol.73 (7), p.1490-1525 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The logarithmic correction for the order of the maximum for two‐speed branching Brownian motion changes discontinuously when approaching slopes σ12=σ22=1, which corresponds to standard branching Brownian motion. In this article we study this transition more closely by choosing σ12=1±t−α and σ22=1∓t−α. We show that the logarithmic correction for the order of the maximum now smoothly interpolates between the correction in the i.i.d. case 122lnt,322lnt, and 622lnt when 0 |
---|---|
ISSN: | 0010-3640 1097-0312 |
DOI: | 10.1002/cpa.21893 |