A numerical method for solving variable‐order fractional diffusion equations using fractional‐order Taylor wavelets

This paper aims to provide a new numerical method for solving variable‐order fractional diffusion equations. The method is constructed using fractional‐order Taylor wavelets. By using the regularized beta function, a formula for computing the exact value of Riemann‐Liouville fractional integral oper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2021-05, Vol.37 (3), p.2668-2686
Hauptverfasser: Vo, Thieu N., Razzaghi, Mohsen, Toan, Phan Thanh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper aims to provide a new numerical method for solving variable‐order fractional diffusion equations. The method is constructed using fractional‐order Taylor wavelets. By using the regularized beta function, a formula for computing the exact value of Riemann‐Liouville fractional integral operator of the fractional‐order Taylor wavelets is given. The Taylor wavelets properties and the formula are used in combination with a spectral collocation method to reduce the given diffusion equation to a system of algebraic equations. The method is easy to implement, and gives very accurate solutions. Several examples are given to show the applicability and the effectiveness of the method.
ISSN:0749-159X
1098-2426
DOI:10.1002/num.22761