A numerical method for solving variable‐order fractional diffusion equations using fractional‐order Taylor wavelets
This paper aims to provide a new numerical method for solving variable‐order fractional diffusion equations. The method is constructed using fractional‐order Taylor wavelets. By using the regularized beta function, a formula for computing the exact value of Riemann‐Liouville fractional integral oper...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2021-05, Vol.37 (3), p.2668-2686 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper aims to provide a new numerical method for solving variable‐order fractional diffusion equations. The method is constructed using fractional‐order Taylor wavelets. By using the regularized beta function, a formula for computing the exact value of Riemann‐Liouville fractional integral operator of the fractional‐order Taylor wavelets is given. The Taylor wavelets properties and the formula are used in combination with a spectral collocation method to reduce the given diffusion equation to a system of algebraic equations. The method is easy to implement, and gives very accurate solutions. Several examples are given to show the applicability and the effectiveness of the method. |
---|---|
ISSN: | 0749-159X 1098-2426 |
DOI: | 10.1002/num.22761 |