Cation–dipole interaction that creates ordered ion channels in an anion exchange membrane for fast OH− conduction
Precise control over polyelectrolyte architecture, engineered for self‐assembly of ion‐conducting channels, is of fundamental and technological importance to many fields, for example, fuel cells and redox flow batteries and electrodialysis. Building on recent advances with the supramolecular chemist...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2021-04, Vol.67 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | AIChE journal |
container_volume | 67 |
creator | Zhang, Jianjun He, Yubin Zhang, Kaiyu Liang, Xian Bance‐Soualhi, Rachida Zhu, Yuan Ge, Xiaolin Shehzad, Muhammad A. Yu, Weisheng Ge, Zijuan Wu, Liang Varcoe, John Robert Xu, Tongwen |
description | Precise control over polyelectrolyte architecture, engineered for self‐assembly of ion‐conducting channels, is of fundamental and technological importance to many fields, for example, fuel cells and redox flow batteries and electrodialysis. Building on recent advances with the supramolecular chemistry, we introduce inter/intra‐molecular cation–dipole interactions between pendent quaternary ammoniums cations and polar polyethylene glycol grafts in an anion‐exchange membrane (AEM). Such interactions lead to desirable, ordered ion‐conducting pathways when in the membrane form. Comparison of the results of molecular dynamics simulation with 1H NMR and nano‐scale microscopy analyses show that the cation–dipole interactions enhance self‐assembly and the formation of interconnected ionic network domains, providing three‐dimensional pathways for both water and ion transport. The resultant AEM exhibits high OH− conductivity (49 mS cm−1 at 30°C) and a completive peak power density of 622 mW cm−2 at 70°C when tested in a H2/O2 single‐cell alkaline membrane fuel cell. |
doi_str_mv | 10.1002/aic.17133 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509258052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509258052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3343-387cf1a0d3d58ce2ec13241fba0e8c22eeaae8db4f7dc53ab4b47561b81bae4a3</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQxhdRsFYPvsGCJw9p90_WpMcS1BYKveh5mexObEqarbsJ6s2jZ33DPolJ41UYGOab33wDHyHXnE04Y2IKpZnwhEt5QkZcxUmkZkydkhFjjEedwM_JRQjbbhJJKkakzaApXX34_LHl3lVIy7pBD6YXabOBhhqP0GCgzlv0aGm_MBuoa6xCR1PoqxfxvZdfkO5wl3uokRbO0wJCQ9eLw9c3Na627dH5kpwVUAW8-utj8vxw_5QtotX6cZnNV5GRMpaRTBNTcGBWWpUaFGi4FDEvcmCYGiEQATC1eVwk1igJeZzHibrjecpzwBjkmNwMvnvvXlsMjd661tfdSy0UmwmVMiU66nagjHcheCz03pc78B-aM92nqrtU9THVjp0O7FtZ4cf_oJ4vs-HiF6rTfMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509258052</pqid></control><display><type>article</type><title>Cation–dipole interaction that creates ordered ion channels in an anion exchange membrane for fast OH− conduction</title><source>Access via Wiley Online Library</source><creator>Zhang, Jianjun ; He, Yubin ; Zhang, Kaiyu ; Liang, Xian ; Bance‐Soualhi, Rachida ; Zhu, Yuan ; Ge, Xiaolin ; Shehzad, Muhammad A. ; Yu, Weisheng ; Ge, Zijuan ; Wu, Liang ; Varcoe, John Robert ; Xu, Tongwen</creator><creatorcontrib>Zhang, Jianjun ; He, Yubin ; Zhang, Kaiyu ; Liang, Xian ; Bance‐Soualhi, Rachida ; Zhu, Yuan ; Ge, Xiaolin ; Shehzad, Muhammad A. ; Yu, Weisheng ; Ge, Zijuan ; Wu, Liang ; Varcoe, John Robert ; Xu, Tongwen</creatorcontrib><description>Precise control over polyelectrolyte architecture, engineered for self‐assembly of ion‐conducting channels, is of fundamental and technological importance to many fields, for example, fuel cells and redox flow batteries and electrodialysis. Building on recent advances with the supramolecular chemistry, we introduce inter/intra‐molecular cation–dipole interactions between pendent quaternary ammoniums cations and polar polyethylene glycol grafts in an anion‐exchange membrane (AEM). Such interactions lead to desirable, ordered ion‐conducting pathways when in the membrane form. Comparison of the results of molecular dynamics simulation with 1H NMR and nano‐scale microscopy analyses show that the cation–dipole interactions enhance self‐assembly and the formation of interconnected ionic network domains, providing three‐dimensional pathways for both water and ion transport. The resultant AEM exhibits high OH− conductivity (49 mS cm−1 at 30°C) and a completive peak power density of 622 mW cm−2 at 70°C when tested in a H2/O2 single‐cell alkaline membrane fuel cell.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.17133</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Anion exchange ; Anion exchanging ; anion‐exchange membranes ; Assembly ; Batteries ; Cations ; cation–dipole interaction ; Conduction ; Dipole interactions ; Electrodialysis ; Fuel cells ; Fuel technology ; ion channel ; Ion channels ; Ion transport ; Membranes ; Molecular dynamics ; NMR ; Nuclear magnetic resonance ; polyelectrolyte ; Polyelectrolytes ; Polyethylene glycol ; Rechargeable batteries</subject><ispartof>AIChE journal, 2021-04, Vol.67 (4), p.n/a</ispartof><rights>2020 American Institute of Chemical Engineers</rights><rights>2021 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3343-387cf1a0d3d58ce2ec13241fba0e8c22eeaae8db4f7dc53ab4b47561b81bae4a3</citedby><cites>FETCH-LOGICAL-c3343-387cf1a0d3d58ce2ec13241fba0e8c22eeaae8db4f7dc53ab4b47561b81bae4a3</cites><orcidid>0000-0002-9221-5126 ; 0000-0002-8377-5834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.17133$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.17133$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Jianjun</creatorcontrib><creatorcontrib>He, Yubin</creatorcontrib><creatorcontrib>Zhang, Kaiyu</creatorcontrib><creatorcontrib>Liang, Xian</creatorcontrib><creatorcontrib>Bance‐Soualhi, Rachida</creatorcontrib><creatorcontrib>Zhu, Yuan</creatorcontrib><creatorcontrib>Ge, Xiaolin</creatorcontrib><creatorcontrib>Shehzad, Muhammad A.</creatorcontrib><creatorcontrib>Yu, Weisheng</creatorcontrib><creatorcontrib>Ge, Zijuan</creatorcontrib><creatorcontrib>Wu, Liang</creatorcontrib><creatorcontrib>Varcoe, John Robert</creatorcontrib><creatorcontrib>Xu, Tongwen</creatorcontrib><title>Cation–dipole interaction that creates ordered ion channels in an anion exchange membrane for fast OH− conduction</title><title>AIChE journal</title><description>Precise control over polyelectrolyte architecture, engineered for self‐assembly of ion‐conducting channels, is of fundamental and technological importance to many fields, for example, fuel cells and redox flow batteries and electrodialysis. Building on recent advances with the supramolecular chemistry, we introduce inter/intra‐molecular cation–dipole interactions between pendent quaternary ammoniums cations and polar polyethylene glycol grafts in an anion‐exchange membrane (AEM). Such interactions lead to desirable, ordered ion‐conducting pathways when in the membrane form. Comparison of the results of molecular dynamics simulation with 1H NMR and nano‐scale microscopy analyses show that the cation–dipole interactions enhance self‐assembly and the formation of interconnected ionic network domains, providing three‐dimensional pathways for both water and ion transport. The resultant AEM exhibits high OH− conductivity (49 mS cm−1 at 30°C) and a completive peak power density of 622 mW cm−2 at 70°C when tested in a H2/O2 single‐cell alkaline membrane fuel cell.</description><subject>Anion exchange</subject><subject>Anion exchanging</subject><subject>anion‐exchange membranes</subject><subject>Assembly</subject><subject>Batteries</subject><subject>Cations</subject><subject>cation–dipole interaction</subject><subject>Conduction</subject><subject>Dipole interactions</subject><subject>Electrodialysis</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>ion channel</subject><subject>Ion channels</subject><subject>Ion transport</subject><subject>Membranes</subject><subject>Molecular dynamics</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>polyelectrolyte</subject><subject>Polyelectrolytes</subject><subject>Polyethylene glycol</subject><subject>Rechargeable batteries</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9Kw0AQxhdRsFYPvsGCJw9p90_WpMcS1BYKveh5mexObEqarbsJ6s2jZ33DPolJ41UYGOab33wDHyHXnE04Y2IKpZnwhEt5QkZcxUmkZkydkhFjjEedwM_JRQjbbhJJKkakzaApXX34_LHl3lVIy7pBD6YXabOBhhqP0GCgzlv0aGm_MBuoa6xCR1PoqxfxvZdfkO5wl3uokRbO0wJCQ9eLw9c3Na627dH5kpwVUAW8-utj8vxw_5QtotX6cZnNV5GRMpaRTBNTcGBWWpUaFGi4FDEvcmCYGiEQATC1eVwk1igJeZzHibrjecpzwBjkmNwMvnvvXlsMjd661tfdSy0UmwmVMiU66nagjHcheCz03pc78B-aM92nqrtU9THVjp0O7FtZ4cf_oJ4vs-HiF6rTfMw</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Zhang, Jianjun</creator><creator>He, Yubin</creator><creator>Zhang, Kaiyu</creator><creator>Liang, Xian</creator><creator>Bance‐Soualhi, Rachida</creator><creator>Zhu, Yuan</creator><creator>Ge, Xiaolin</creator><creator>Shehzad, Muhammad A.</creator><creator>Yu, Weisheng</creator><creator>Ge, Zijuan</creator><creator>Wu, Liang</creator><creator>Varcoe, John Robert</creator><creator>Xu, Tongwen</creator><general>John Wiley & Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9221-5126</orcidid><orcidid>https://orcid.org/0000-0002-8377-5834</orcidid></search><sort><creationdate>202104</creationdate><title>Cation–dipole interaction that creates ordered ion channels in an anion exchange membrane for fast OH− conduction</title><author>Zhang, Jianjun ; He, Yubin ; Zhang, Kaiyu ; Liang, Xian ; Bance‐Soualhi, Rachida ; Zhu, Yuan ; Ge, Xiaolin ; Shehzad, Muhammad A. ; Yu, Weisheng ; Ge, Zijuan ; Wu, Liang ; Varcoe, John Robert ; Xu, Tongwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3343-387cf1a0d3d58ce2ec13241fba0e8c22eeaae8db4f7dc53ab4b47561b81bae4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anion exchange</topic><topic>Anion exchanging</topic><topic>anion‐exchange membranes</topic><topic>Assembly</topic><topic>Batteries</topic><topic>Cations</topic><topic>cation–dipole interaction</topic><topic>Conduction</topic><topic>Dipole interactions</topic><topic>Electrodialysis</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>ion channel</topic><topic>Ion channels</topic><topic>Ion transport</topic><topic>Membranes</topic><topic>Molecular dynamics</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>polyelectrolyte</topic><topic>Polyelectrolytes</topic><topic>Polyethylene glycol</topic><topic>Rechargeable batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jianjun</creatorcontrib><creatorcontrib>He, Yubin</creatorcontrib><creatorcontrib>Zhang, Kaiyu</creatorcontrib><creatorcontrib>Liang, Xian</creatorcontrib><creatorcontrib>Bance‐Soualhi, Rachida</creatorcontrib><creatorcontrib>Zhu, Yuan</creatorcontrib><creatorcontrib>Ge, Xiaolin</creatorcontrib><creatorcontrib>Shehzad, Muhammad A.</creatorcontrib><creatorcontrib>Yu, Weisheng</creatorcontrib><creatorcontrib>Ge, Zijuan</creatorcontrib><creatorcontrib>Wu, Liang</creatorcontrib><creatorcontrib>Varcoe, John Robert</creatorcontrib><creatorcontrib>Xu, Tongwen</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jianjun</au><au>He, Yubin</au><au>Zhang, Kaiyu</au><au>Liang, Xian</au><au>Bance‐Soualhi, Rachida</au><au>Zhu, Yuan</au><au>Ge, Xiaolin</au><au>Shehzad, Muhammad A.</au><au>Yu, Weisheng</au><au>Ge, Zijuan</au><au>Wu, Liang</au><au>Varcoe, John Robert</au><au>Xu, Tongwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cation–dipole interaction that creates ordered ion channels in an anion exchange membrane for fast OH− conduction</atitle><jtitle>AIChE journal</jtitle><date>2021-04</date><risdate>2021</risdate><volume>67</volume><issue>4</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Precise control over polyelectrolyte architecture, engineered for self‐assembly of ion‐conducting channels, is of fundamental and technological importance to many fields, for example, fuel cells and redox flow batteries and electrodialysis. Building on recent advances with the supramolecular chemistry, we introduce inter/intra‐molecular cation–dipole interactions between pendent quaternary ammoniums cations and polar polyethylene glycol grafts in an anion‐exchange membrane (AEM). Such interactions lead to desirable, ordered ion‐conducting pathways when in the membrane form. Comparison of the results of molecular dynamics simulation with 1H NMR and nano‐scale microscopy analyses show that the cation–dipole interactions enhance self‐assembly and the formation of interconnected ionic network domains, providing three‐dimensional pathways for both water and ion transport. The resultant AEM exhibits high OH− conductivity (49 mS cm−1 at 30°C) and a completive peak power density of 622 mW cm−2 at 70°C when tested in a H2/O2 single‐cell alkaline membrane fuel cell.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/aic.17133</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9221-5126</orcidid><orcidid>https://orcid.org/0000-0002-8377-5834</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2021-04, Vol.67 (4), p.n/a |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_2509258052 |
source | Access via Wiley Online Library |
subjects | Anion exchange Anion exchanging anion‐exchange membranes Assembly Batteries Cations cation–dipole interaction Conduction Dipole interactions Electrodialysis Fuel cells Fuel technology ion channel Ion channels Ion transport Membranes Molecular dynamics NMR Nuclear magnetic resonance polyelectrolyte Polyelectrolytes Polyethylene glycol Rechargeable batteries |
title | Cation–dipole interaction that creates ordered ion channels in an anion exchange membrane for fast OH− conduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A11%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cation%E2%80%93dipole%20interaction%20that%20creates%20ordered%20ion%20channels%20in%20an%20anion%20exchange%20membrane%20for%20fast%20OH%E2%88%92%20conduction&rft.jtitle=AIChE%20journal&rft.au=Zhang,%20Jianjun&rft.date=2021-04&rft.volume=67&rft.issue=4&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.17133&rft_dat=%3Cproquest_cross%3E2509258052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509258052&rft_id=info:pmid/&rfr_iscdi=true |