Cation–dipole interaction that creates ordered ion channels in an anion exchange membrane for fast OH− conduction

Precise control over polyelectrolyte architecture, engineered for self‐assembly of ion‐conducting channels, is of fundamental and technological importance to many fields, for example, fuel cells and redox flow batteries and electrodialysis. Building on recent advances with the supramolecular chemist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2021-04, Vol.67 (4), p.n/a
Hauptverfasser: Zhang, Jianjun, He, Yubin, Zhang, Kaiyu, Liang, Xian, Bance‐Soualhi, Rachida, Zhu, Yuan, Ge, Xiaolin, Shehzad, Muhammad A., Yu, Weisheng, Ge, Zijuan, Wu, Liang, Varcoe, John Robert, Xu, Tongwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Precise control over polyelectrolyte architecture, engineered for self‐assembly of ion‐conducting channels, is of fundamental and technological importance to many fields, for example, fuel cells and redox flow batteries and electrodialysis. Building on recent advances with the supramolecular chemistry, we introduce inter/intra‐molecular cation–dipole interactions between pendent quaternary ammoniums cations and polar polyethylene glycol grafts in an anion‐exchange membrane (AEM). Such interactions lead to desirable, ordered ion‐conducting pathways when in the membrane form. Comparison of the results of molecular dynamics simulation with 1H NMR and nano‐scale microscopy analyses show that the cation–dipole interactions enhance self‐assembly and the formation of interconnected ionic network domains, providing three‐dimensional pathways for both water and ion transport. The resultant AEM exhibits high OH− conductivity (49 mS cm−1 at 30°C) and a completive peak power density of 622 mW cm−2 at 70°C when tested in a H2/O2 single‐cell alkaline membrane fuel cell.
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.17133