A Multi-Iteration Enhanced 2P-SMA Method for Improved Error Reduction on a WP-SAW Water Temperature and Pressure Sensor
Due to the instability of the characteristics of materials, fabrication processes and user handling, newly designed and fabricated wireless passive surface acoustic wave (WP-SAW) sensor nodes have inconsistent sensing performance. Furthermore, ambient environmental interferences aggravate inconsiste...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.48236-48243 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the instability of the characteristics of materials, fabrication processes and user handling, newly designed and fabricated wireless passive surface acoustic wave (WP-SAW) sensor nodes have inconsistent sensing performance. Furthermore, ambient environmental interferences aggravate inconsistences under complex working conditions. In this paper, a multi-iteration enhanced two-point simple moving average (MI-2P-SMA) method is proposed for sensing error reduction of a WP-SAW reflective delay line water temperature and pressure sensor. This method is improved from the traditional 2P-SMA method for better performance on error reduction. The results show: the MI-2P-SMA method does not change the original characteristics of experimental data; it can reduce relative errors of the WP-SAW reflective delay line water temperature and pressure sensor and has better performance than a traditional 2P-SMA method; it reduces the number of data points and the extent of this reduction is dependent on iteration time. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3065564 |