A restricted nonlocal operator bridging together the Laplacian and the fractional Laplacian

In this work we introduce volume constraint problems involving the nonlocal operator ( - Δ ) δ s , closely related to the fractional Laplacian ( - Δ ) s , and depending upon a parameter δ > 0 called horizon. We study the associated linear and spectral problems and the behavior of these volume con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2021-04, Vol.60 (2), Article 71
Hauptverfasser: Bellido, José C., Ortega, Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we introduce volume constraint problems involving the nonlocal operator ( - Δ ) δ s , closely related to the fractional Laplacian ( - Δ ) s , and depending upon a parameter δ > 0 called horizon. We study the associated linear and spectral problems and the behavior of these volume constraint problems when δ → 0 + and δ → + ∞ . Through these limit processes on ( - Δ ) δ s we derive spectral convergence to the local Laplacian and to the fractional Laplacian as δ → 0 + and δ → + ∞ respectively, as well as we prove the convergence of solutions of these problems to solutions of a local Dirichlet problem involving ( - Δ ) as δ → 0 + or to solutions of a nonlocal fractional Dirichlet problem involving ( - Δ ) s as δ → + ∞ .
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-020-01896-1