A restricted nonlocal operator bridging together the Laplacian and the fractional Laplacian
In this work we introduce volume constraint problems involving the nonlocal operator ( - Δ ) δ s , closely related to the fractional Laplacian ( - Δ ) s , and depending upon a parameter δ > 0 called horizon. We study the associated linear and spectral problems and the behavior of these volume con...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2021-04, Vol.60 (2), Article 71 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we introduce volume constraint problems involving the nonlocal operator
(
-
Δ
)
δ
s
, closely related to the fractional Laplacian
(
-
Δ
)
s
, and depending upon a parameter
δ
>
0
called horizon. We study the associated linear and spectral problems and the behavior of these volume constraint problems when
δ
→
0
+
and
δ
→
+
∞
. Through these limit processes on
(
-
Δ
)
δ
s
we derive spectral convergence to the local Laplacian and to the fractional Laplacian as
δ
→
0
+
and
δ
→
+
∞
respectively, as well as we prove the convergence of solutions of these problems to solutions of a local Dirichlet problem involving
(
-
Δ
)
as
δ
→
0
+
or to solutions of a nonlocal fractional Dirichlet problem involving
(
-
Δ
)
s
as
δ
→
+
∞
. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-020-01896-1 |