Palladium(0) complexes of diferrocenylmercury diphosphines: synthesis, X-ray structure analyses, catalytic isomerization, and C-Cl bond activation

Palladium(0) phosphine complexes are of great importance as catalysts in numerous bond formation reactions that involve oxidative addition of substrates. Highly active catalysts with labile ligands are of particular interest but can be challenging to isolate and structurally characterize. We investi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2021-04, Vol.5 (13), p.4512-4518
Hauptverfasser: Tagne Kuate, Alain C, Lalancette, Roger. A, Bockfeld, Dirk, Tamm, Matthias, Jäkle, Frieder
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Palladium(0) phosphine complexes are of great importance as catalysts in numerous bond formation reactions that involve oxidative addition of substrates. Highly active catalysts with labile ligands are of particular interest but can be challenging to isolate and structurally characterize. We investigate here the synthesis and chemical reactivity of Pd 0 complexes that contain geometrically adaptable diferrocenylmercury-bridged diphosphine chelate ligands (L) in combination with a labile dibenzylideneacetone (dba) ligand. The diastereomeric diphosphines 1a (p S p R , meso -isomer) and 1b (p S p S -isomer) differ in the orientation of the ferrocene moieties relative to the central Ph 2 PC 5 H 3 -Hg-C 5 H 3 PPh 2 bridging entity. The structurally distinct trigonal LPd 0 (dba) complexes 2a ( meso ) and 2b (p S p S ) are obtained upon treatment with Pd(dba) 2 . A competition reaction reveals that 1b reacts faster than 1a with Pd(dba) 2 . Unexpectedly, catalytic interconversion of 1a ( meso ) into 1b ( rac ) is observed at room temperature in the presence of only catalytic amounts of Pd(dba) 2 . Both Pd 0 complexes, 2a and 2b , readily undergo oxidative addition into the C-Cl bond of CH 2 Cl 2 at moderate temperatures with formation of the square-planar trans -chelate complexes LPd II Cl(CH 2 Cl) ( 3a , 3b ). Kinetic studies reveal a significantly higher reaction rate for the meso -isomer 2a in comparison to (p S p S )- 2b . In trigonal LPd 0 (dba) complexes with diastereomeric diferrocenylmercury diphosphine ligands the Pd environment and Hg Pd separation are starkly different. The rates of Pd 0 complex formation and their CH 2 Cl 2 oxidative addition vary significantly.
ISSN:1477-9226
1477-9234
DOI:10.1039/d1dt00641j