Improving the strength of polyethylene solids by simple controlling of the molecular weight distribution

We prepared model polyethylene (PE) samples that contain the controlled-amounts of the high-molecular-weight component by blending a monodispersed PE into a polydispersed PE, to elucidate the influence of the high-molecular-weight component of a polymer on its mechanical properties. The strength and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2021-03, Vol.218, p.123526, Article 123526
Hauptverfasser: Kida, Takumitsu, Tanaka, Ryo, Hiejima, Yusuke, Nitta, Koh-hei, Shiono, Takeshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prepared model polyethylene (PE) samples that contain the controlled-amounts of the high-molecular-weight component by blending a monodispersed PE into a polydispersed PE, to elucidate the influence of the high-molecular-weight component of a polymer on its mechanical properties. The strength and strain-hardening modulus were significantly enhanced by the addition of a monodispersed PE of sufficiently high molecular weight, and the critical value of Mw was determined to be ~3.0 × 105. The improved strength and strain-hardening modulus are attributed to higher amounts of inter-cluster links that bridge adjacent lamellar cluster units because these links act as stress transmitters between these units. [Display omitted] •Model polyethylene (PE) samples with different shapes of molecular weight distribution were prepared by blending mono- and polydispersed PEs.•The strength and strain-hardening modulus were enhanced by adding a high-molecular-weight component with Mw > 3.0 × 105.•The improvement of tensile properties is attributed to larger amounts of inter-cluster links, which act as stress transmitters between lamellar cluster units.
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2021.123526