Unfalsified control design using a generalized cost function for a quadrotor

Purpose The purpose of this paper is to design a controller for a quadrotor only by using input–output data without a need for the system model. Design/methodology/approach Tracking control for the quadrotor is considered by using unfalsified control, which is one of the most recent strategies of ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aircraft engineering 2021-04, Vol.93 (2), p.241-250
Hauptverfasser: Hokmabadi, Azam, Khodabandeh, Mahdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose The purpose of this paper is to design a controller for a quadrotor only by using input–output data without a need for the system model. Design/methodology/approach Tracking control for the quadrotor is considered by using unfalsified control, which is one of the most recent strategies of robust adaptive control. The main assumption in unfalsified control design is that there is no access to the system model. Also, ideal path tracking and controlling the quadrotor are been paid attention to in the presence of external disturbances and uncertainties. First, unfalsified control method is introduced which is a data-driven and model-free approach in the field of adaptive control. Next, model of the quadrotor and unfalsified control design for the quadrotor are presented. Second, design of a control bank consisting of four proportional integral derivative controllers and a sliding mode controller is carried out. Findings A particular innovation on an unfalsified control algorithm in this paper is use of a generalized cost function in the hysteresis switching algorithm to find the best controller. Originality/value Finally, the performance and robustness of the designed controllers are investigated by simulation studies in various operating conditions including reference trajectory changes, facing to wind disturbance, uncertainty of the system and changes in payload, which show acceptable performances.
ISSN:1748-8842
1758-4213
DOI:10.1108/AEAT-01-2020-0019