Zero-Shot Language Transfer vs Iterative Back Translation for Unsupervised Machine Translation

This work focuses on comparing different solutions for machine translation on low resource language pairs, namely, with zero-shot transfer learning and unsupervised machine translation. We discuss how the data size affects the performance of both unsupervised MT and transfer learning. Additionally w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Joshi, Aviral, Huang, Chengzhi, Singh, Har Simrat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work focuses on comparing different solutions for machine translation on low resource language pairs, namely, with zero-shot transfer learning and unsupervised machine translation. We discuss how the data size affects the performance of both unsupervised MT and transfer learning. Additionally we also look at how the domain of the data affects the result of unsupervised MT. The code to all the experiments performed in this project are accessible on Github.
ISSN:2331-8422