Microwave-accessibility conditions estimated by plasma parameters obtained experimentally on electron cyclotron resonance ion source

We insert two probes in the upstream and the downstream regions with respect to the electron cyclotron resonance (ECR) zone which is formed at the center of mirror fields. We measure simultaneously plasma parameters in those regions by each of them under the same operating condition. We measure ion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2021-04, Vol.92 (4), p.043514-043514
Hauptverfasser: Kubo, Wataru, Harisaki, Shuhei, Owada, Issei, Sato, Koichi, Tsuda, Kazuki, Kato, Yushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We insert two probes in the upstream and the downstream regions with respect to the electron cyclotron resonance (ECR) zone which is formed at the center of mirror fields. We measure simultaneously plasma parameters in those regions by each of them under the same operating condition. We measure ion saturation currents Iis and electron energy distribution functions at two positions. We obtain measurement results that suggest the more efficient ECR on the side closer to the microwave-launchings than those on the other side. It is consistent with the accessibility condition of the right-hand polarization wave. We also compare the charge state distributions of Ar ion beams extracted in the case of launching microwaves from the coaxial semi-dipole antenna and those from the rod antenna. We observe the higher multicharged ion beam currents at the low microwave powers in the case of the rod antenna than those in the case of the coaxial semi-dipole antenna. We also confirm stable increasements of ion beam currents at considerably high microwave powers in the case of the coaxial semi-dipole antenna. Based on the experimental results, we propose a new microwave-launching method, “dual-ECR heating” and report its preferable preliminary experimental results in this paper.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0035631