A Hardware Implementation on Customizable Embedded DSP Core for Colorectal Tumor Classification with Endoscopic Video toward Real-Time Computer-Aided Diagnosais System

In this paper, we present a hardware implementation of a colorectal cancer diagnosis support system using a colorectal endoscopic video image on customizable embedded DSP. In an endoscopic video image, color shift, blurring or reflection of light occurs in a lesion area, which affects the discrimina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2021/04/01, Vol.E104.A(4), pp.691-701
Hauptverfasser: ODAGAWA, Masayuki, OKAMOTO, Takumi, KOIDE, Tetsushi, TAMAKI, Toru, RAYTCHEV, Bisser, KANEDA, Kazufumi, YOSHIDA, Shigeto, MIENO, Hiroshi, TANAKA, Shinji, SUGAWARA, Takayuki, TOISHI, Hiroshi, TSUJI, Masayuki, TAMBA, Nobuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a hardware implementation of a colorectal cancer diagnosis support system using a colorectal endoscopic video image on customizable embedded DSP. In an endoscopic video image, color shift, blurring or reflection of light occurs in a lesion area, which affects the discrimination result by a computer. Therefore, in order to identify lesions with high robustness and stable classification to these images specific to video frame, we implement a computer-aided diagnosis (CAD) system for colorectal endoscopic images with Narrow Band Imaging (NBI) magnification with the Convolutional Neural Network (CNN) feature and Support Vector Machine (SVM) classification. Since CNN and SVM need to perform many multiplication and accumulation (MAC) operations, we implement the proposed hardware system on a customizable embedded DSP, which can realize at high speed MAC operations and parallel processing with Very Long Instruction Word (VLIW). Before implementing to the customizable embedded DSP, we profile and analyze processing cycles of the CAD system and optimize the bottlenecks. We show the effectiveness of the real-time diagnosis support system on the embedded system for endoscopic video images. The prototyped system demonstrated real-time processing on video frame rate (over 30fps @ 200MHz) and more than 90% accuracy.
ISSN:0916-8508
1745-1337
DOI:10.1587/transfun.2020EAP1069