Modified projected subgradient method for solving pseudomonotone equilibrium and fixed point problems in Banach spaces

Motivated by the work of D.V. Hieu and J.-J. Strodiot [Strong convergence theorems for equilibrium problems and fixed point problems in Banach spaces, J. Fixed Point Theory Appl., (2018), 20:131], we introduce a new projected subgradient method for solving pseudomonotone equilibrium and fixed point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2021-04, Vol.40 (3), Article 101
1. Verfasser: Jolaoso, Lateef Olakunle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by the work of D.V. Hieu and J.-J. Strodiot [Strong convergence theorems for equilibrium problems and fixed point problems in Banach spaces, J. Fixed Point Theory Appl., (2018), 20:131], we introduce a new projected subgradient method for solving pseudomonotone equilibrium and fixed point problem in Banach spaces. The main iterative steps in the proposed method use a projection method and do not require any Lipschitz-like condition on the equilibrium bifunction. A strong convergence result is proved under mild conditions and we applied our algorithm to solving pseudomonotone variational inequalities in Banach spaces. Also, we provide some numerical examples to illustrate the performance of the proposed method and compare it with other methods in the literature.
ISSN:2238-3603
1807-0302
DOI:10.1007/s40314-021-01490-x