Dynamics in an attraction–repulsion Navier–Stokes system with signal-dependent motility and sensitivity
This paper is concerned with an attraction–repulsion Navier–Stokes system with signal-dependent motility and sensitivity in a two-dimensional smooth bounded domain under zero Neumann boundary conditions for n, c, v and the homogeneous Dirichlet boundary condition for u. This system describes the evo...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2021-04, Vol.62 (4) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with an attraction–repulsion Navier–Stokes system with signal-dependent motility and sensitivity in a two-dimensional smooth bounded domain under zero Neumann boundary conditions for n, c, v and the homogeneous Dirichlet boundary condition for u. This system describes the evolution of cells that react on two different chemical signals in a liquid surrounding environment and models a density-suppressed motility in the process of stripe pattern formation through the self-trapping mechanism. The major difficulty in analysis comes from the possible degeneracy of diffusion as c and v tend to infinite. Based on a new weighted energy method, it is proved that under appropriate assumptions on parameter functions, this system possesses a unique global classical solution, which is uniformly-in-time bounded. Moreover, by means of energy functionals, it is shown that the global bounded solution of the system exponentially converges to the constant steady state. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/5.0029161 |