Least gradient functions in metric random walk spaces

In this paper we study least gradient functions in metric random walk spaces, which include as particular cases the least gradient functions on locally finite weighted connected graphs and nonlocal least gradient functions on ℝ N . Assuming that a Poincaré inequality is satisfied, we study the Euler...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2021, Vol.27, p.S28
Hauptverfasser: Górny, Wojciech, Mazón, José M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study least gradient functions in metric random walk spaces, which include as particular cases the least gradient functions on locally finite weighted connected graphs and nonlocal least gradient functions on ℝ N . Assuming that a Poincaré inequality is satisfied, we study the Euler-Lagrange equation associated with the least gradient problem. We also prove the Poincaré inequality in a few settings.
ISSN:1292-8119
1262-3377
DOI:10.1051/cocv/2020087