Probabilistic interpretation of a system of coupled Hamilton-Jacobi-Bellman-Isaacs equations

By introducing a stochastic differential game whose dynamics and multi-dimensional cost functionals form a multi-dimensional coupled forward-backward stochastic differential equation with jumps, we give a probabilistic interpretation to a system of coupled Hamilton-Jacobi-Bellman-Isaacs equations. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2021, Vol.27, p.S17
Hauptverfasser: Li, Juan, Li, Wenqiang, Wei, Qingmeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page S17
container_title ESAIM. Control, optimisation and calculus of variations
container_volume 27
creator Li, Juan
Li, Wenqiang
Wei, Qingmeng
description By introducing a stochastic differential game whose dynamics and multi-dimensional cost functionals form a multi-dimensional coupled forward-backward stochastic differential equation with jumps, we give a probabilistic interpretation to a system of coupled Hamilton-Jacobi-Bellman-Isaacs equations. For this, we generalize the definition of the lower value function initially defined only for deterministic times t and states x to stopping times τ and random variables η  ∈  L 2 (Ω,  τ,  P ; ℝ). The generalization plays a key role in the proof of a strong dynamic programming principle. This strong dynamic programming principle allows us to show that the lower value function is a viscosity solution of our system of multi-dimensional coupled Hamilton-Jacobi-Bellman-Isaacs equations. The uniqueness is obtained for a particular but important case.
doi_str_mv 10.1051/cocv/2020070
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2507663740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507663740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-347c320918d1d39b3ad317c858c354667e3ba945edf61a4a720767047844b1d53</originalsourceid><addsrcrecordid>eNotkE1Lw0AURQdRsFZ3_oCAW8fO9yRLLdZWCrrQnRBeJhOYkmTSmYnQf29ju7p3cd67cBC6p-SJEkkXxpvfBSOMEE0u0IwyxTDnWl9OvWA4p7S4Rjcx7gihigsxQz-fwVdQudbF5Ezm-mTDEGyC5Hyf-SaDLB5ist3UjR-H1tbZGjrXJt_jdzC-cvjFtm0HPd5EABMzux__z-MtumqgjfbunHP0vXr9Wq7x9uNts3zeYsNknjAX2nBGCprXtOZFxaHmVJtc5oZLoZS2vIJCSFs3ioIAzYhWmgidC1HRWvI5ejj9HYLfjzamcufH0B8nSyaPrOJakCP1eKJM8DEG25RDcB2EQ0lJOfkrJ3_l2R__AwMFYzM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507663740</pqid></control><display><type>article</type><title>Probabilistic interpretation of a system of coupled Hamilton-Jacobi-Bellman-Isaacs equations</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Li, Juan ; Li, Wenqiang ; Wei, Qingmeng</creator><creatorcontrib>Li, Juan ; Li, Wenqiang ; Wei, Qingmeng</creatorcontrib><description>By introducing a stochastic differential game whose dynamics and multi-dimensional cost functionals form a multi-dimensional coupled forward-backward stochastic differential equation with jumps, we give a probabilistic interpretation to a system of coupled Hamilton-Jacobi-Bellman-Isaacs equations. For this, we generalize the definition of the lower value function initially defined only for deterministic times t and states x to stopping times τ and random variables η  ∈  L 2 (Ω,  τ,  P ; ℝ). The generalization plays a key role in the proof of a strong dynamic programming principle. This strong dynamic programming principle allows us to show that the lower value function is a viscosity solution of our system of multi-dimensional coupled Hamilton-Jacobi-Bellman-Isaacs equations. The uniqueness is obtained for a particular but important case.</description><identifier>ISSN: 1292-8119</identifier><identifier>EISSN: 1262-3377</identifier><identifier>DOI: 10.1051/cocv/2020070</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Differential equations ; Differential games ; Dynamic programming ; Mathematical analysis ; Probability theory ; Random variables</subject><ispartof>ESAIM. Control, optimisation and calculus of variations, 2021, Vol.27, p.S17</ispartof><rights>2021. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-cocv.org/articles/cocv/abs/2021/01/cocv190126/cocv190126.html .</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c258t-347c320918d1d39b3ad317c858c354667e3ba945edf61a4a720767047844b1d53</cites><orcidid>0000-0001-8564-9105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Li, Wenqiang</creatorcontrib><creatorcontrib>Wei, Qingmeng</creatorcontrib><title>Probabilistic interpretation of a system of coupled Hamilton-Jacobi-Bellman-Isaacs equations</title><title>ESAIM. Control, optimisation and calculus of variations</title><description>By introducing a stochastic differential game whose dynamics and multi-dimensional cost functionals form a multi-dimensional coupled forward-backward stochastic differential equation with jumps, we give a probabilistic interpretation to a system of coupled Hamilton-Jacobi-Bellman-Isaacs equations. For this, we generalize the definition of the lower value function initially defined only for deterministic times t and states x to stopping times τ and random variables η  ∈  L 2 (Ω,  τ,  P ; ℝ). The generalization plays a key role in the proof of a strong dynamic programming principle. This strong dynamic programming principle allows us to show that the lower value function is a viscosity solution of our system of multi-dimensional coupled Hamilton-Jacobi-Bellman-Isaacs equations. The uniqueness is obtained for a particular but important case.</description><subject>Differential equations</subject><subject>Differential games</subject><subject>Dynamic programming</subject><subject>Mathematical analysis</subject><subject>Probability theory</subject><subject>Random variables</subject><issn>1292-8119</issn><issn>1262-3377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkE1Lw0AURQdRsFZ3_oCAW8fO9yRLLdZWCrrQnRBeJhOYkmTSmYnQf29ju7p3cd67cBC6p-SJEkkXxpvfBSOMEE0u0IwyxTDnWl9OvWA4p7S4Rjcx7gihigsxQz-fwVdQudbF5Ezm-mTDEGyC5Hyf-SaDLB5ist3UjR-H1tbZGjrXJt_jdzC-cvjFtm0HPd5EABMzux__z-MtumqgjfbunHP0vXr9Wq7x9uNts3zeYsNknjAX2nBGCprXtOZFxaHmVJtc5oZLoZS2vIJCSFs3ioIAzYhWmgidC1HRWvI5ejj9HYLfjzamcufH0B8nSyaPrOJakCP1eKJM8DEG25RDcB2EQ0lJOfkrJ3_l2R__AwMFYzM</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Li, Juan</creator><creator>Li, Wenqiang</creator><creator>Wei, Qingmeng</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8564-9105</orcidid></search><sort><creationdate>2021</creationdate><title>Probabilistic interpretation of a system of coupled Hamilton-Jacobi-Bellman-Isaacs equations</title><author>Li, Juan ; Li, Wenqiang ; Wei, Qingmeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-347c320918d1d39b3ad317c858c354667e3ba945edf61a4a720767047844b1d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Differential equations</topic><topic>Differential games</topic><topic>Dynamic programming</topic><topic>Mathematical analysis</topic><topic>Probability theory</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Li, Wenqiang</creatorcontrib><creatorcontrib>Wei, Qingmeng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Juan</au><au>Li, Wenqiang</au><au>Wei, Qingmeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic interpretation of a system of coupled Hamilton-Jacobi-Bellman-Isaacs equations</atitle><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle><date>2021</date><risdate>2021</risdate><volume>27</volume><spage>S17</spage><pages>S17-</pages><issn>1292-8119</issn><eissn>1262-3377</eissn><abstract>By introducing a stochastic differential game whose dynamics and multi-dimensional cost functionals form a multi-dimensional coupled forward-backward stochastic differential equation with jumps, we give a probabilistic interpretation to a system of coupled Hamilton-Jacobi-Bellman-Isaacs equations. For this, we generalize the definition of the lower value function initially defined only for deterministic times t and states x to stopping times τ and random variables η  ∈  L 2 (Ω,  τ,  P ; ℝ). The generalization plays a key role in the proof of a strong dynamic programming principle. This strong dynamic programming principle allows us to show that the lower value function is a viscosity solution of our system of multi-dimensional coupled Hamilton-Jacobi-Bellman-Isaacs equations. The uniqueness is obtained for a particular but important case.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/cocv/2020070</doi><orcidid>https://orcid.org/0000-0001-8564-9105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1292-8119
ispartof ESAIM. Control, optimisation and calculus of variations, 2021, Vol.27, p.S17
issn 1292-8119
1262-3377
language eng
recordid cdi_proquest_journals_2507663740
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Differential equations
Differential games
Dynamic programming
Mathematical analysis
Probability theory
Random variables
title Probabilistic interpretation of a system of coupled Hamilton-Jacobi-Bellman-Isaacs equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20interpretation%20of%20a%20system%20of%20coupled%20Hamilton-Jacobi-Bellman-Isaacs%20equations&rft.jtitle=ESAIM.%20Control,%20optimisation%20and%20calculus%20of%20variations&rft.au=Li,%20Juan&rft.date=2021&rft.volume=27&rft.spage=S17&rft.pages=S17-&rft.issn=1292-8119&rft.eissn=1262-3377&rft_id=info:doi/10.1051/cocv/2020070&rft_dat=%3Cproquest_cross%3E2507663740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507663740&rft_id=info:pmid/&rfr_iscdi=true