Probabilistic interpretation of a system of coupled Hamilton-Jacobi-Bellman-Isaacs equations
By introducing a stochastic differential game whose dynamics and multi-dimensional cost functionals form a multi-dimensional coupled forward-backward stochastic differential equation with jumps, we give a probabilistic interpretation to a system of coupled Hamilton-Jacobi-Bellman-Isaacs equations. F...
Gespeichert in:
Veröffentlicht in: | ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2021, Vol.27, p.S17 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By introducing a stochastic differential game whose dynamics and multi-dimensional cost functionals form a multi-dimensional coupled forward-backward stochastic differential equation with jumps, we give a probabilistic interpretation to a system of coupled Hamilton-Jacobi-Bellman-Isaacs equations. For this, we generalize the definition of the lower value function initially defined only for deterministic times
t
and states
x
to stopping times
τ
and random variables
η
∈
L
2
(Ω, τ,
P
; ℝ). The generalization plays a key role in the proof of a strong dynamic programming principle. This strong dynamic programming principle allows us to show that the lower value function is a viscosity solution of our system of multi-dimensional coupled Hamilton-Jacobi-Bellman-Isaacs equations. The uniqueness is obtained for a particular but important case. |
---|---|
ISSN: | 1292-8119 1262-3377 |
DOI: | 10.1051/cocv/2020070 |