Cooperative games with partial information

Let ( N ,  v ) be a cooperative game with transferable utility and F ⊆ 2 N an arbitrary set system, where F represents the set of feasible coalitions S whose worths v ( S ) are known. We introduce a game ( N , v F ) as follows. If S ∈ F , then v F ( S ) = v ( S ) and otherwise v F ( S ) is defined s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of game theory 2021-03, Vol.50 (1), p.297-309
Hauptverfasser: Li, Daniel Li, Shan, Erfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ( N ,  v ) be a cooperative game with transferable utility and F ⊆ 2 N an arbitrary set system, where F represents the set of feasible coalitions S whose worths v ( S ) are known. We introduce a game ( N , v F ) as follows. If S ∈ F , then v F ( S ) = v ( S ) and otherwise v F ( S ) is defined such that S has zero Harsanyi dividend. By taking different F , this model produces some well-known games directly or indirectly, such as hypergraph games. We characterize the Shapley value of ( N , v F ) on different domains similarly to that for the Myerson value.
ISSN:0020-7276
1432-1270
DOI:10.1007/s00182-021-00759-z