Cooperative games with partial information
Let ( N , v ) be a cooperative game with transferable utility and F ⊆ 2 N an arbitrary set system, where F represents the set of feasible coalitions S whose worths v ( S ) are known. We introduce a game ( N , v F ) as follows. If S ∈ F , then v F ( S ) = v ( S ) and otherwise v F ( S ) is defined s...
Gespeichert in:
Veröffentlicht in: | International journal of game theory 2021-03, Vol.50 (1), p.297-309 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let (
N
,
v
) be a cooperative game with transferable utility and
F
⊆
2
N
an arbitrary set system, where
F
represents the set of feasible coalitions
S
whose worths
v
(
S
) are known. We introduce a game
(
N
,
v
F
)
as follows. If
S
∈
F
, then
v
F
(
S
)
=
v
(
S
)
and otherwise
v
F
(
S
)
is defined such that
S
has zero Harsanyi dividend. By taking different
F
, this model produces some well-known games directly or indirectly, such as hypergraph games. We characterize the Shapley value of
(
N
,
v
F
)
on different domains similarly to that for the Myerson value. |
---|---|
ISSN: | 0020-7276 1432-1270 |
DOI: | 10.1007/s00182-021-00759-z |