A facile strategy for designing core-shell nanocomposite of ZIF-67/Fe3O4: A novel insight into ciprofloxacin removal from wastewater

[Display omitted] Utilization of the advanced oxidation process (AOP) for degradation of antibiotics into byproducts with low toxicity for enhancing the quality of drinking water and wastewater has remained a huge challenge for environmental aim. In this study, a nanocomposite based on Cobalt zeolit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Process safety and environmental protection 2021-03, Vol.147, p.392-404
Hauptverfasser: Alamgholiloo, Hassan, Hashemzadeh, Bayram, Noroozi Pesyan, Nader, Sheikhmohammadi, Amir, Asgari, Esrafil, Yeganeh, Jaber, Hashemzadeh, Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Utilization of the advanced oxidation process (AOP) for degradation of antibiotics into byproducts with low toxicity for enhancing the quality of drinking water and wastewater has remained a huge challenge for environmental aim. In this study, a nanocomposite based on Cobalt zeolite imidazolate framework (ZIF-67), and Fe3O4 nanoparticles (NPs) were prepared using the simple sol-gel method. In this nanocomposite, Fe3O4 NPs were used as an ideal platform for microporous ZIF-67 growth, aiming to create an efficient heterogeneous catalyst with magnetic separation for the activation of peroxymonosulfate (PMS) to expeditiously degrade ciprofloxacin (CIP) antibiotics. The catalytic activity of the proposed nanocomposite was systematically evaluated with several operational factors, such as nanocatalyst and oxidant dosage, initial pH, co-existing anions, and the stability of the catalyst. Furthermore, scavenging technique and electron spin resonance (ESR) demonstrate that the sulfate and hydroxyl radicals play a major role in the degradation process. The findings indicate that ZIF-67/Fe3O4 nanocomposite is a greener and more suitable option for large scale applications and creates new insights into the removal of contaminants from the ecosystem.
ISSN:0957-5820
1744-3598
DOI:10.1016/j.psep.2020.09.061