A Hybrid Genetic Algorithm for Integrated Truck Scheduling and Product Routing on the Cross-Docking System with Multiple Receiving and Shipping Docks

In this research, a truck scheduling problem for a cross-docking system with multiple receiving and shipping docks is studied. Until recently, single-dock cross-docking problems are studied mostly. This research is focused on the multiple-dock problems. The objective of the problem is to determine t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021, Vol.2021, p.1-17
Hauptverfasser: Yu, Wooyeon, Ha, Chunghun, Park, SeJoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this research, a truck scheduling problem for a cross-docking system with multiple receiving and shipping docks is studied. Until recently, single-dock cross-docking problems are studied mostly. This research is focused on the multiple-dock problems. The objective of the problem is to determine the best docking sequences of inbound and outbound trucks to the receiving and shipping docks, respectively, which minimize the maximal completion time. We propose a new hybrid genetic algorithm to solve this problem. This genetic algorithm improves the solution quality through the population scheme of the nested structure and the new product routing heuristic. To avoid unnecessary infeasible solutions, a linked-chromosome representation is used to link the inbound and outbound truck sequences, and locus-pairing crossovers and mutations for this representation are proposed. As a result of the evaluation of the benchmark problems, it shows that the proposed hybrid GA provides a superior solution compared to the existing heuristics.
ISSN:1024-123X
1563-5147
DOI:10.1155/2021/2026834