MSC-derived exosomal miR-34a/c-5p and miR-29b-3p improve intestinal barrier function by targeting the Snail/Claudins signaling pathway

Mesenchymal stem cell (MSC)-derived exosomes (MSCs-exos) regulate biological functions in different diseases, such as liver fibrosis, diabetes, and ischaemic heart injury. However, the function of MSC-derived exosomes on the intestinal barrier and the underlying mechanisms are poorly characterized....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2020-09, Vol.257, p.118017-118017, Article 118017
Hauptverfasser: Li, Yi-Yun, Xu, Qing-Wen, Xu, Peng-Yuan, Li, Wei-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mesenchymal stem cell (MSC)-derived exosomes (MSCs-exos) regulate biological functions in different diseases, such as liver fibrosis, diabetes, and ischaemic heart injury. However, the function of MSC-derived exosomes on the intestinal barrier and the underlying mechanisms are poorly characterized. The expression of miR-34a/c-5p, miR-29b-3p and Claudin-3 in human normal intestinal tissues and damaged intestinal tissues was evaluated by RT-qPCR. The effect of MSC-secreted exosomes on Claudins in Caco-2 cells was measured by using confocal microscopy, RT-qPCR and Western blot. Dual luciferase reporter assays and RNA immunoprecipitation (RIP) assays were performed to study the interaction between miR-34a/c-5p, miR-29b-3p and Snail. I/R-induced intestinal damage in rats was used to determine the in vivo effect of MSC-exos on intestinal barrier function. In this study, we found that miR-34a/c-5p, miR-29b-3p and Claudin-3 were downregulated in damaged human intestinal tissues. MSC-exos increased the expression of Claudin-3, Claudin-2 and ZO-1 in Caco-2 cells. Further studies demonstrated that MSC-exos promoted Claudin-3, Claudin-2 and ZO-1 expression in Caco-2 cells by Snail, which was targeted by miR-34a/c-5p and miR-29b-3p. In vivo experiments showed that MSC-derived exosomes could improve I/R-induced intestinal damage through the Snail/Claudins signaling pathway. The findings here suggest a novel molecular basis for the therapy of intestinal barrier dysfunction.
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2020.118017