Automorphisms of C2 with Parabolic Cylinders
A parabolic cylinder is an invariant, non-recurrent Fatou component Ω of an automorphism F of C 2 satisfying: (1) The closure of the ω -limit set of F on Ω contains an isolated fixed point, (2) there exists a univalent map Φ from Ω into C 2 conjugating F to the translation ( z , w ) ↦ ( z + 1 , w )...
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2021, Vol.31 (4), p.3498-3522 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
parabolic cylinder
is an invariant, non-recurrent Fatou component
Ω
of an automorphism
F
of
C
2
satisfying: (1) The closure of the
ω
-limit set of
F
on
Ω
contains an isolated fixed point, (2) there exists a univalent map
Φ
from
Ω
into
C
2
conjugating
F
to the translation
(
z
,
w
)
↦
(
z
+
1
,
w
)
, and (3) every limit map of
{
F
∘
n
}
on
Ω
has one-dimensional image. In this paper, we prove the existence of parabolic cylinders for an explicit class of maps, and show that examples in this class can be constructed as compositions of shears and overshears. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-020-00403-4 |