Automorphisms of C2 with Parabolic Cylinders

A parabolic cylinder is an invariant, non-recurrent Fatou component Ω of an automorphism F of C 2 satisfying: (1) The closure of the ω -limit set of F on Ω contains an isolated fixed point, (2) there exists a univalent map Φ from Ω into C 2 conjugating F to the translation ( z , w ) ↦ ( z + 1 , w )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2021, Vol.31 (4), p.3498-3522
Hauptverfasser: Boc Thaler, Luka, Bracci, Filippo, Peters, Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A parabolic cylinder is an invariant, non-recurrent Fatou component Ω of an automorphism F of C 2 satisfying: (1) The closure of the ω -limit set of F on Ω contains an isolated fixed point, (2) there exists a univalent map Φ from Ω into C 2 conjugating F to the translation ( z , w ) ↦ ( z + 1 , w ) , and (3) every limit map of { F ∘ n } on Ω has one-dimensional image. In this paper, we prove the existence of parabolic cylinders for an explicit class of maps, and show that examples in this class can be constructed as compositions of shears and overshears.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-020-00403-4