Voltage Restoration and Adjustable Current Sharing for DC Microgrid With Time Delay via Distributed Secondary Control

As a key part of modern power systems, DC microgrid is becoming increasingly important. Among different control methods for DC microgrid, secondary control has been widely investigated since it can guarantee both current sharing and DC bus voltage restoration. However, the existing secondary control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on sustainable energy 2021-04, Vol.12 (2), p.1068-1077
Hauptverfasser: Xing, Lantao, Guo, Fanghong, Liu, Xiaokang, Wen, Changyun, Mishra, Yateendra, Tian, Yu-Chu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a key part of modern power systems, DC microgrid is becoming increasingly important. Among different control methods for DC microgrid, secondary control has been widely investigated since it can guarantee both current sharing and DC bus voltage restoration. However, the existing secondary control results only consider fixed current sharing ratio among DC converters, and thus they cannot be applied to the case where an adjustable current sharing ratio is desired. Motivated by this observation, this paper presents a new distributed secondary control strategy. By imposing a time-varying droop gain and specifying the "virtual voltage drop," this strategy is able to ensure adjustable current sharing ratio among DC converters. Moreover, the effects of time delay on the control performance is also analyzed. Three case studies and two hardware-in-the-loop (HIL) tests are provided to verify the efficacy of the presented strategy.
ISSN:1949-3029
1949-3037
DOI:10.1109/TSTE.2020.3032605