Listen Before Receive (LBR) Assisted Network Access in LAA and WiFi Heterogeneous Networks

The Listen-Before-Talk (LBT) is the main procedure for Licensed Assisted Access (LAA) to accomplish fair and friendly coexistence with other operators or technologies operating over unlicensed spectrum. However, in LBT, the lack of coordination with other existing systems brings challenges in sustai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.43845-43861
Hauptverfasser: Huang, Chin-Ya, Chen, Hsueh-Yi, Huang, Chen-Hao, Sheu, Shiann-Tsong, Chiang, Te-Wei, Cheng, Tzu-Ling, Chang, Chen-Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Listen-Before-Talk (LBT) is the main procedure for Licensed Assisted Access (LAA) to accomplish fair and friendly coexistence with other operators or technologies operating over unlicensed spectrum. However, in LBT, the lack of coordination with other existing systems brings challenges in sustaining performance in the coexistence of LAA and WiFi networks. Specifically, the hidden node problem (HNP) and exposed node problem (ENP) cannot be effectively handled when both LAA and WiFi nodes attempt to access the unlicensed spectrum at the same time. Thus, transmission failure might occur and the network performance would be degraded. In order to mitigate the influences caused by HNP and ENP, based on LBT, we firstly analyze HNP and ENP by means of mathematical approach. The analytical results surprisingly reveal that the hidden node and exposed node probabilities are as high as 41% and 39.33%, respectively. Then, a Give And p-persistent Take (GAT) mechanism with the Listen-Before-Receive (LBR) procedure, namely LBR-GAT, is proposed to cope with LBT to reduce the collision caused by HNP as well as to retrieve the bandwidth sacrificed by the ENP. With LBR-GAT, the LAA sender conditionally gives up or takes back transmission opportunities, and thus the unlicensed spectrum could be efficiently shared between LAA and WiFi. Evaluation results show that the proposed LBR-GAT could conditionally obtain better network performance comparing to legacy LBT.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3065676