Poisson-geometric Analogues of Kitaev Models
We define Poisson-geometric analogues of Kitaev’s lattice models. They are obtained from a Kitaev model on an embedded graph Γ by replacing its Hopf algebraic data with Poisson data for a Poisson-Lie group G . Each edge is assigned a copy of the Heisenberg double H ( G ) . Each vertex (face) of Γ de...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2021-04, Vol.383 (1), p.345-400 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define Poisson-geometric analogues of Kitaev’s lattice models. They are obtained from a Kitaev model on an embedded graph
Γ
by replacing its Hopf algebraic data with Poisson data for a Poisson-Lie group
G
. Each edge is assigned a copy of the Heisenberg double
H
(
G
)
. Each vertex (face) of
Γ
defines a Poisson action of
G
(of
G
∗
) on the product of these Heisenberg doubles. The actions for a vertex and adjacent face form a Poisson action of the double Poisson-Lie group
D
(
G
). We define Poisson counterparts of vertex and face
operators
and relate them via the Poisson bracket to the vector fields generating the actions of
D
(
G
). We construct an isomorphism of Poisson
D
(
G
)-spaces between this Poisson-geometrical Kitaev model and Fock and Rosly’s Poisson structure for the graph
Γ
and the Poisson-Lie group
D
(
G
). This decouples the latter and represents it as a product of Heisenberg doubles. It also relates the Poisson-geometrical Kitaev model to the symplectic structure on the moduli space of flat
D
(
G
)-bundles on an oriented surface with boundary constructed from
Γ
. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-021-03992-5 |